Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 16(12): 1973703, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839799

RESUMO

Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.


Assuntos
Selaginellaceae , Ácido Abscísico/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma/genética
2.
PLoS One ; 16(1): e0240390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411785

RESUMO

Miscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


Assuntos
Cruzamentos Genéticos , Flores/genética , Genótipo , Saccharum/genética
3.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116128

RESUMO

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Assuntos
Poaceae/genética , Biomassa , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poliploidia , Saccharum/genética , Estações do Ano , Sorghum/genética
4.
G3 (Bethesda) ; 10(7): 2465-2476, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32457095

RESUMO

Miscanthus is a perennial grass with potential for lignocellulosic ethanol production. To ensure its utility for this purpose, breeding efforts should focus on increasing genetic diversity of the nothospecies Miscanthus × giganteus (M×g) beyond the single clone used in many programs. Germplasm from the corresponding parental species M. sinensis (Msi) and M. sacchariflorus (Msa) could theoretically be used as training sets for genomic prediction of M×g clones with optimal genomic estimated breeding values for biofuel traits. To this end, we first showed that subpopulation structure makes a substantial contribution to the genomic selection (GS) prediction accuracies within a 538-member diversity panel of predominately Msi individuals and a 598-member diversity panels of Msa individuals. We then assessed the ability of these two diversity panels to train GS models that predict breeding values in an interspecific diploid 216-member M×g F2 panel. Low and negative prediction accuracies were observed when various subsets of the two diversity panels were used to train these GS models. To overcome the drawback of having only one interspecific M×g F2 panel available, we also evaluated prediction accuracies for traits simulated in 50 simulated interspecific M×g F2 panels derived from different sets of Msi and diploid Msa parents. The results revealed that genetic architectures with common causal mutations across Msi and Msa yielded the highest prediction accuracies. Ultimately, these results suggest that the ideal training set should contain the same causal mutations segregating within interspecific M×g populations, and thus efforts should be undertaken to ensure that individuals in the training and validation sets are as closely related as possible.


Assuntos
Genômica , Melhoramento Vegetal , Diploide , Genótipo , Humanos , Fenótipo , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
Sci Rep ; 9(1): 18181, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796775

RESUMO

Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes.


Assuntos
Gleiquênias/genética , Genoma de Planta/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , DNA de Plantas/genética , Tamanho do Genoma/genética , Genômica/métodos , Filogenia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética
6.
Ann Bot ; 124(4): 731-748, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30247525

RESUMO

BACKGROUND AND AIMS: Miscanthus, a C4 perennial grass native to East Asia, is a promising biomass crop. Miscanthus sacchariflorus has a broad geographic range, is used to produce paper in China and is one of the parents (along with Miscanthus sinensis) of the important biomass species Miscanthus × giganteus. The largest study of M. sacchariflorus population genetics to date is reported here. METHODS: Collections included 764 individuals across East Asia. Samples were genotyped with 34 605 single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (RAD-seq) and ten plastid microsatellites, and were subjected to ploidy analysis by flow cytometry. KEY RESULTS: Six major genetic groups within M. sacchariflorus were identified using SNP data: three diploid groups, comprising Yangtze (M. sacchariflorus ssp. lutarioriparius), N China and Korea/NE China/Russia; and three tetraploid groups, comprising N China/Korea/Russia, S Japan and N Japan. Miscanthus sacchariflorus ssp. lutarioriparius was derived from the N China group, with a substantial bottleneck. Japanese and mainland tetraploids originated from independent polyploidization events. Hybrids between diploid M. sacchariflorus and M. sinensis were identified in Korea, but without introgression into either parent species. In contrast, tetraploid M. sacchariflorus in southern Japan and Korea exhibited substantial hybridization and introgression with local diploid M. sinensis. CONCLUSIONS: Genetic data indicated that the land now under the Yellow Sea was a centre of diversity for M. sacchariflorus during the last glacial maximum, followed by a series of migrations as the climate became warmer and wetter. Overall, M. sacchariflorus has greater genetic diversity than M. sinensis, suggesting that breeding and selection within M. sacchariflorus will be important for the development of improved M. × giganteus. Ornamental M. sacchariflorus genotypes in Europe and North America represent a very narrow portion of the species' genetic diversity, and thus do not well represent the species as a whole.


Assuntos
Diploide , Tetraploidia , China , Europa (Continente) , Ásia Oriental , Humanos , Japão , América do Norte , Poaceae
7.
PLoS One ; 12(4): e0171360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28369059

RESUMO

The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.


Assuntos
Poaceae/classificação , Biomassa , Análise Discriminante , Análise dos Mínimos Quadrados , Modelos Biológicos , Redes Neurais de Computação , Poaceae/química , Poaceae/crescimento & desenvolvimento , Análise de Componente Principal , Especificidade da Espécie , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral , Máquina de Vetores de Suporte
8.
Am J Bot ; 104(10): 1484-1492, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885228

RESUMO

PREMISE OF THE STUDY: Polyploidy has extensively shaped the evolution of plants, but the early stages of polyploidy are still poorly understood. The neoallopolyploid species Tragopogon mirus and T. miscellus are both characterized by widespread karyotypic variation, including frequent aneuploidy and intergenomic translocations. Our study illuminates the origins and early impacts of this variation by addressing two questions: How quickly does karyotypic variation accumulate in Tragopogon allopolyploids following whole-genome duplication (WGD), and how does the fertility of resynthesized Tragopogon allopolyploids evolve shortly after WGD? METHODS: We used genomic in situ hybridization and lactophenol-cotton blue staining to estimate the karyotypic variation and pollen stainability, respectively, of resynthesized T. mirus and T. miscellus during the first five generations after WGD. KEY RESULTS: Widespread karyotypic variation developed quickly in synthetics and resembled that of naturally occurring T. mirus and T. miscellus by generation S4 . Pollen stainability in resynthesized allopolyploids was consistently lower than that of natural T. mirus and T. miscellus, as well as their respective diploid progenitor species. Logistic regression showed that mean pollen stainability increased slightly over four generations in resynthesized T. mirus but remained at equivalent levels in T. miscellus. CONCLUSIONS: Our results clarify some of the changes that occur in T. mirus and T. miscellus immediately following their origin, most notably the rapid onset of karyotypic variation within these species immediately following WGD.


Assuntos
Genética Populacional , Genoma de Planta/genética , Tragopogon/genética , Diploide , Variação Genética , Hibridização In Situ , Cariótipo , Cariotipagem , Pólen/genética , Poliploidia
9.
Ann Bot ; 118(5): 941-955, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451985

RESUMO

Background and aims Miscanthus is a genus of perennial C4 grasses native to East Asia. It includes the emerging ligno-cellulosic biomass crop M. ×giganteus, a hybrid between M. sinensis and M. sacchariflorus. Biomass yield and cold tolerance are of particular interest in Miscanthus, given that this crop is more temperate adapted than its C4 relatives maize, sorghum and sugarcane. Methods A plant exploration was conducted in eastern Russia, at the northern extreme of the native range for Miscanthus, with collections including 174 clonal germplasm accessions (160 M. sacchariflorus and 14 M. sinensis) from 47 sites. Accessions were genotyped by restriction site-associated DNA sequencing (RAD-seq) and plastid microsatellites. Key Results Miscanthus sinensis was found in maritime climates near Vladivostok (43·6°N) and on southern Sakhalin Island (46·6°N). Miscanthus sacchariflorus was found inland at latitudes as high as 49·3°N, where M. sinensis was absent. Most M. sacchariflorus accessions were diploid, but approx. 2 % were tetraploids. Molecular markers revealed little population structure (Jost's D < 0·007 among diploid groups) but high genetic diversity (expected heterozygosity = 0·14) within the collection of Russian M. sacchariflorus. Genome-wide association (GWA) analysis for traits measured at the collection sites revealed three M. sacchariflorus single nucleotide polymorphisms (SNPs) significantly associated with the number of stems per unit area, one with height and one with basal stem diameter; three were near or within previously described sorghum quantitative trait loci for related traits. Conclusions This new Miscanthus germplasm collection from eastern Russia will be useful for breeding Miscanthus and sugarcane cultivars with improved adaptation to cold. Moreover, a strategy is proposed to facilitate the rapid utilization of new germplasm collections: by implementing low-cost SNP genotyping to conduct GWA studies of phenotypic data obtained at collection sites, plant breeders can be provided with actionable information on which accessions have desirable traits and alleles.

10.
J Exp Bot ; 66(14): 4227-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26089536

RESUMO

The genus Miscanthus is a perennial C4 grass native to eastern Asia and is a promising candidate bioenergy crop for cool temperate areas. Flowering time is a crucial factor governing regional and seasonal adaptation; in addition, it is also a key target trait for extending the vegetative phase to improve biomass potential. Homologues of CONSTANS (CO)/Heading date 1(Hd1) were cloned from Miscanthus sinensis and named MsiHd1. Sequences of MsiHd1 homologues were compared among 24 wild M. sinensis accessions from Japan, 14 from China, and three from South Korea. Two to five MsiHd1 alleles in each accession were identified, suggesting that MsiHd1 consists of at least three loci in the Miscanthus genome. Verifying the open reading frame in MsiHd1, they were classified as putative functional alleles without mutations or non-functional alleles caused by indels. The Neighbor-Joining tree indicated that one of the multiple MsiHd1 loci is a pseudogene locus without any functional alleles. The pseudogene locus was named MsiHd1b, and the other loci were considered to be part of the MsiHd1a multi-locus family. Interestingly, in most Japanese accessions 50% or more of the MsiHd1a alleles were non-functional, whereas accessions from the East Asian mainland harboured only functional alleles. Five novel miniature inverted transposable elements (MITEs) (MsiMITE1-MsiMITE5) were observed in MsiHd1a/b. MsiMITE1, detected in exon 1 of MsiHd1a, was only observed in Japanese accessions and its revertant alleles derived from retransposition were predominantly in Chinese accessions. These differences in MsiHd1a show that the dependency on functional MsiHd1a alleles is different between accessions from the East Asian mainland and Japan.


Assuntos
Alelos , Poaceae/genética , Ásia , Biomassa , Elementos de DNA Transponíveis , Japão , Filogenia , Poaceae/classificação
11.
J Exp Bot ; 66(14): 4213-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25618143

RESUMO

Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mechanism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and breadth were difficult to obtain before the advent of affordable high-density genotyping. Throughout Japan, tetraploid Miscanthus sacchariflorus and diploid Miscanthus sinensis are common, and occasionally hybridize. In this study, 667 M. sinensis and 78 M. sacchariflorus genotypes from Japan were characterized using 20 704 SNPs and ten plastid microsatellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids originated through autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into tetraploid M. sacchariflorus throughout Japan; most tetraploids had some M. sinensis DNA. Among phenotypically M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1-39%, with introgression greatest in southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6-27% M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern China, selection for adaptation to a moderate maritime climate probably favoured cross-ploidy introgressants in southern Japan. These results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars.


Assuntos
Poaceae/genética , Hibridização Genética , Japão , Repetições de Microssatélites/genética , Plastídeos/genética , Polimorfismo de Nucleotídeo Único
12.
Ann Bot ; 114(1): 97-107, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24918203

RESUMO

BACKGROUND AND AIMS: Miscanthus is a perennial C4 grass that is a leading potential feedstock crop for the emerging bioenergy industry in North America, Europe and China. However, only a single, sterile genotype of M. × giganteus (M×g), a nothospecies derived from diploid M. sinensis (Msi) and tetraploid M. sacchariflorus (Msa), is currently available to farmers for biomass production. To facilitate breeding of Miscanthus, this study characterized genetic diversity and population structure of Msi in its native range of East Asia. METHODS: A total of 767 accessions were studied, including 617 Msi from most of its native range in China, Japan and South Korea, and 77 ornamental cultivars and 43 naturalized individuals from the USA. Accessions were evaluated with 21 207 restriction site-associated DNA sequencing single nucleotide polymorphism (SNP) markers, 424 GoldenGate SNPs and ten plastid microsatellite markers. KEY RESULTS: Six genetic clusters of Msi from geographically distinct regions in Asia were identified. Genetic data indicated that (1) south-eastern China was the origin of Msi populations found in temperate eastern Asia, which is consistent with this area probably having been a refugium during the last glacial maximum (LGM); (2) Msi migrated directly from south-eastern China to Japan before migrating to the same latitudes in China and Korea, which is consistent with the known sequence of warming post-LGM; (3) ornamental Msi cultivars were derived from the southern Japan population, and US naturalized populations were derived from a sub-set of the ornamental cultivars; and (4) many ornamental cultivars previously described as Msi have hybrid ancestry from Msa and Msi, whereas US naturalized populations of Msi do not. CONCLUSIONS: Population structure of Msi was driven by patterns of warming since the LGM, and secondarily by geographical barriers. This study will facilitate germplasm conservation, association analyses and identification of potential heterotic groups for the improvement of Miscanthus as a bioenergy crop.


Assuntos
Variação Genética , Poaceae/genética , Ásia , Sequência de Bases , Cruzamento , Mudança Climática , Metabolismo Energético , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites/genética , Filogenia , Plastídeos/genética , Poaceae/fisiologia , Polimorfismo de Nucleotídeo Único , Estados Unidos
13.
J Plant Res ; 127(3): 373-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24496502

RESUMO

The comparative study on leaf anatomy and stomata structures of six genera of Taxaceae s. l. was conducted. Leaf anatomical structures were very comparable to each other in tissue shape and their arrangements. Taxus, Austrotaxus, and Pseudotaxus have no foliar resin canal, whereas Amentotaxus, Cephalotaxus, and Torreya have a single resin canal located below the vascular bundle. Among them, Torreya was unique with thick-walled, almost round sclerenchymatous epidermal cells. In addition, Amentotaxus and Torreya were comprised of some fiber cells around the vascular bundle. Also, Amentotaxus resembled Cephalotaxus harringtonia and its var. nana because they have discontinuous fibrous hypodermis. However, C. fortunei lacked the same kind of cells. Stomata were arranged in two stomatal bands separated by a mid-vein. The most unique stomatal structure was of Taxus with papillose accessory cells forming stomatal apparatus and of Torreya with deeply seated stomata covered with a special filament structure. Some morphological and molecular studies have already been discussed for the alternative classification of taxad genera into different minor families. The present study is also similar to these hypotheses because each genus has their own individuality in anatomical structure and stomata morphology. In conclusion, these differences in leaf and stomata morphology neither strongly support the two tribes in Taxaceae nor fairly recognize the monogeneric family, Cephalotaxaceae. Rather, it might support an alternative classification of taxad genera in different minor families or a single family Taxaceae including Cephalotaxus. In this study, we would prefer the latter one because there is no clear reason to separate Cephalotaxus from the rest genera of Taxaceae. Therefore, Taxaceae should be redefined with broad circumscriptions including Cephalotaxus.


Assuntos
Filogenia , Folhas de Planta/anatomia & histologia , Taxaceae/anatomia & histologia , Taxaceae/classificação , Células do Mesofilo/citologia , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/citologia , Estômatos de Plantas/ultraestrutura , Feixe Vascular de Plantas/citologia , Resinas Vegetais/metabolismo , Taxaceae/citologia
14.
Mol Biol Rep ; 40(2): 1979-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160900

RESUMO

Initially, we isolated the caffeic acid O-methyltransferase (COMT) gene from Miscanthus sinensis (accession number HM062766.1). Next, we produced transgenic tobacco plants with down-regulated COMT gene expression to study its control of total phenol and lignin content and to perform morphological analysis. These transgenic plants were found to have reduced PAL and ascorbate peroxidases expression, which are related to the phenylpropanoid pathway and antioxidant activity. The MsCOMT-down-regulated plants had decreased total lignin in the leaves and stem compared with control plants. Reduced flavonol concentrations were confirmed in MsCOMT-down-regulated transgenic plants. We also observed a morphological difference, with reduced plant cell number in transgenic plants harboring antisense MsCOMT. The transgenic tobacco plants with down-regulated COMT gene expression demonstrate that COMT plays a crucial role related to controlling lignin and phenol content in plants. Also, COMT activity may be related to flavonoid production in the plant lignin pathway.


Assuntos
Lignina/metabolismo , Metiltransferases/genética , Fenol/metabolismo , Proteínas de Plantas/genética , Antioxidantes/metabolismo , Flavonoides/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Redes e Vias Metabólicas , Metiltransferases/biossíntese , Mutagênese Insercional , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Poaceae/enzimologia , Poaceae/genética , /ultraestrutura , Transcriptoma
15.
BMB Rep ; 41(10): 693-8, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18959814

RESUMO

The full-length cDNA of LebZIP2 (Lycopersicon esculentum bZIP2) encodes a protein of 164 amino acids and contains a N-terminal basic-region leucine zipper domain. Analysis of the deduced tomato LebZIP2 amino acid sequence revealed that it shares 85% sequence identity with both tobacco bZIP and pepper CcbZIP. LebZIP2 mRNA is expressed at a high level exclusively in flowers. Presently, LebZIP2 was strongly increased also following NaCl and mannitol treatments. No significant LebZIP2 expression was evident following cold treatment. Transient LebZIP2 overexpression resulted in increased NbNOA1 and NbNR transcript levels in Nicotiana benthamiana leaves. Our results indicate that LebZIP2 might play roles as an abiotic stress-signaling pathway and as a transcriptional regulator of the NbNOA1 or NbNR genes.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Rhizobium/genética , Cloreto de Sódio/farmacologia , Solanum lycopersicum/genética , Estresse Fisiológico , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Vetores Genéticos , Solanum lycopersicum/efeitos dos fármacos , Manitol/farmacologia , Dados de Sequência Molecular , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína , Estresse Fisiológico/efeitos dos fármacos
16.
Am J Bot ; 95(3): 286-93, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21632353

RESUMO

Whereas most Brassicaceae produce flowers on an elongated inflorescence, a few lineages produce flowers directly from the vegetative rosette on elongated pedicels. Knowing the extent to which independent origins of rosette flowering involve the same developmental and genetic mechanisms could clarify the constraints acting on plant architectural evolution. Prior work in Idahoa, Ionopsidium, and Leavenworthia suggested that changes in the activity or expression of the flower meristem identity gene, LEAFY (LFY), played a role in all three origins of rosette flowering. Here we studied the developmental morphology of L. crassa and immunolocalization of LFY protein in Leavenworthia and Ionopsidium to further compare independent origins of rosette flowering. Leavenworthia crassa differs from Ionopsidium and Idahoa in producing ebracteate flowers. Flowers are, however, associated with "squamules," here interpreted as stipules of a cryptic bract. LFY was detected in L. crassa flower primordia but not in inflorescence meristems. In contrast, the rosette flowering Io. acaule accumulated LFY protein in the inflorescence meristem, whereas its inflorescence-flowering close relative, Io. prolongoi, did not. Thus, although different cases of rosette flowering likely entailed modifications of the same meristem identity program, distinct developmental genetic mechanisms appear to be involved in each case.

17.
J Plant Res ; 117(3): 209-19, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15221584

RESUMO

Although Echinosophora Nakai has been known as a monotypic and endemic genus of Papillionoideae of Fabaceae in Korea, it has been controversial whether it is distinct from or merged with Sophora. To resolve this matter, we conducted molecular phylogenetic analyses using nucleotide sequence data from the plastid rbcL gene and trnL (UAA) intron. Parsimony analysis, using a total of 53 taxa of the Papillionoideae (including E. koreensis [Nakai] Nakai and several species of Sophora and related genera) and using 20 taxa of Caesalpinioideae and Mimosoideae as outgroups, showed that, although the examined species of Sophora are split into two clades, E. koreensis formed a common clade with S. tomentosa (the type species of the genus) and S. flavescens. E. koreensis therefore should be treated as S. koreensis Nakai, and the generic name Echinosophora be eliminated. We also investigated the embryology of S. koreensis (= E. koreensis) and S. flavescens and found that no differences existed between them. Our molecular study, like other studies, strongly suggested that Sophora is polyphyletic. In this study we presented a summary of embryological features of the core Sophora for future critical comparison with related and unrelated taxa.


Assuntos
Fabaceae/genética , Filogenia , DNA de Plantas/química , DNA de Plantas/genética , Fabaceae/classificação , Fabaceae/embriologia , Fertilidade/genética , Flores/genética , Coreia (Geográfico) , Maackia/embriologia , Maackia/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Sophora/embriologia , Sophora/genética
18.
J Plant Res ; 117(3): 221-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15085448

RESUMO

The embryological characteristics of Gomortegaceae, which are poorly understood, were investigated on the basis of Gomortega nitida, the only species of the family, to understand better the evolution of this group within Laurales. Comparisons with other Laurales and Magnoliales (a sister group of Laurales) show that Gomortega has many embryological features in common with the other lauralean families. Notably, Gomortega shares a testa without or with at best only a poorly developed mesotesta as a synapomorphy with all other Laurales. The genus further shares anthers dehisced by valves as a synapomorphy with the other Laurales (except for Calycanthaceae and Monimiaceae), and a non-multiplicative testa and bisporangiate anther as synapomorphies with Atherospermataceae and Siparunaceae (although the non-multiplicative testa occurs as a homoplasy in Monimiaceae, and the bisporangiate anther in Monimiaceae pro parte, Lauraceae pro parte and Hernandiaceae, respectively). Gomortega shows simultaneous cytokinesis to form pollen grains, a one-celled ovule archesporium and non-specialized chalaza, all or part of which may be synapomorphies shared with Atherospermataceae. Gomortega appears to have no embryological autapomorphies, but further comparison with Atherospermataceae is required.


Assuntos
Evolução Biológica , Magnoliopsida/embriologia , Fertilidade , Flores/embriologia , Flores/ultraestrutura , Magnoliopsida/ultraestrutura , Meristema/embriologia , Meristema/ultraestrutura , Microscopia Eletrônica , Sementes/embriologia , Sementes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...